Design Isochronous channel in MANX

K. Yonehara

Introduction

- I want to realize isochronous condition in MANX
- Cary has found instability of beam phase space in isochronous HCC
- I try to figure out the optimum condition based on Slava&Rol's paper

HCC parameters

Inequality condition for beam stability

$$0 < G < R^2$$

$$G = (q - g)\widehat{D}^{-1} \qquad R^2 = \frac{1}{4}(1 + \frac{q^2}{1 + \kappa^2})^2$$

The stability condition represents by using q and g

$$g > -\frac{1}{4\widehat{D}^{-1}} \left(1 + \frac{q^2}{1 + \kappa^2}\right)^2 + q$$
 $g < q$ $q > 0$

Dispersion factor is determined to satisfy isochronous condition (or equal cooling decrement)

$$\widehat{D} = \frac{1 + \kappa^2}{\kappa^2} \frac{1}{\gamma^2}$$

q-g plot

$$\kappa = 1.0$$

$$\lambda = 2.0 \text{ m}$$

$$p = 200 \text{ MeV/c}$$

Geometry dependence

Equal cooling decrement

Wide stable band

Conclusion

- First time look at stable condition
- Naively explain about instability in numerical simulation
- Better to tune q value instead of B
- Verify that equal cooling decrement condition has large acceptance
 - Wide stable band